Note

Synthesis and conformational analysis of *C*-glycosylbarbiturates

M. Bueno Martinez, Francisca Zamora Mata, Angel Muñoz Ruiz,

Juan A. Galbis Perez*,

Departamento de Química Orgánica y Farmaceútica, Universidad de Sevilla, 41071 Seville (Spain)

and Carlos Jaime Cardiel

Departamento de Química, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona (Spain) (Received August 5th, 1989; accepted for publication, September 30th, 1989)

C-Nucleosides may have antibacterial, antiviral, and antitumor activity¹, and their syntheses usually involve C-1-functionalised sugar derivatives and a heterocyclic base, often as a metalated derivative. We have described² an efficient synthesis of C-nucleoside analogues of barbituric acid from unprotected sugars and now report further examples of this reaction.

Thus, reaction of D-glucose, D-galactose, and D-mannose severally with barbituric acid, in hot water at pH 7, gave the 5-D-glycosylbarbiturates 1–3, isolated as the sodium salts in good yields (73–80%). Likewise, 2-deoxy-D-arabino-hexose and D-glucuronic acid reacted severally with barbituric and 1,3-dimethylbarbituric acids to give 4–7 in good yields. The structures of 1–7 were assigned on the basis of u.v. and i.r. data (see Experimental) and the ¹³C-n.m.r. spectra (Table I) which accorded with those of similar compounds². Satisfactory conventional elemental analyses could not be

^{*}Author for correspondence.

236 NOTE

TABLE			
¹³ C-N.m.r.	Data	for	1-7

Compound	Glycosyl ring					Barbituric ring				
	C-1'	C-2'	C-3'	C-4'	C-5'	C-6'	C-2	C-4 C-6	C-5	Ме
1	80.6	70.7	75.7*	70.7	79.3*	61.9	154.3	167.8	86.4	75
2	79.9	70.9	76.2*	68.6	76.5*	62.3	154.3	167.9	86.6	
3	81.7	73.9	74.9	68.1	76.5	62.4	153.9	168.1	89.2	****
4	80.9	36.8	72.1*	72.1*	74.3*	62.2	154.1	167.4	89.6	
5	80.9	36.8	73.4*	72.2*	74.4*	62.2	155.2	165.8	90.3	28.7
6	81.8	75.5	79.0	70.5*	73.6*	177.7	154.3	167.9	86.4	_
7	81.8	76.8	79.1	70.6*	73.5*	177.9	155.3	166.3	87.0	28.7

^{*}In D₂O at 20.15 MHz; in p.p.m. from Me₄Si; assignments marked * may have to be interchanged.

obtained for these sodium salts, but sodium could be determined by atomic absorption spectroscopy.

C-Glucosyluronic acids have been identified as drug metabolites. Thus, in humans, sulfinpyrazone and phenylbutazone (derivatives of 1,2-diphenyl-3,5-dioxopyrazolidine) form C-glucosyluronic acid derivatives at C-4 of the pyrazolidine ring³. The facile formation of 6 and 7 under near-physiological conditions might explain the susceptibility of barbiturates with at least one hydrogen on C-5 to metabolic reaction with UDP-GlcA and the consequent lack of sedative and hypnotic properties.

The conformational equilibrium around the C-1'-C-5 glycosyl bond of the acetylated C-glycosylbarbituric acids 8–11 has been studied using molecular mechanics (MM) calculations (MM2 program⁴). The results, summarised in Table II, show that, for 8 and 9, there is an equilibrium of the conformers 12 and 13 in similar proportions. The calculated J (averaged) values are close to the experimental data². It is concluded that the configuration at C-2' is the determinant factor for this conformational equilibrium. Calculations for 10 and 11 also confirm that the barbituric ring is essentially planar and that the sugar ring is in the 4C_1 conformation.

EXPERIMENTAL

General methods. — Optical rotations were measured at $21\pm5^\circ$ with a 10-cm, 0.5-mL cell and a Perkin–Elmer 241 polarimeter. I.r. spectra (KBr discs) were recorded with a Perkin–Elmer 1310 spectrophotometer and u.v. spectra (aqueous solutions) with a Spectronic 2000 instrument. Sodium was determined with a Perkin–Elmer 370 atomic absorption spectrophotometer. ¹³C-N.m.r. spectra were recorded with a Bruker WP-80-SY spectrometer. MM calculations were performed on a Vax-11/785 computer.

Sodium 5-D-glycopyranosylbarbiturates. — A solution of aldose (50 mmol) in water (100 mL) was treated with barbituric acid (50 mmol), neutralised with sodium carbonate, stored for 5 h at 80° , and concentrated under diminished pressure (to ~ 15 mL). Methanol was added, and the precipitated product was purified by re-

TABLE II

Conformational analysis around the C-1' — C-5 bond for 8-11

Compound	Conformer	φ _{H.H} (*)	Relative energy (kcal.mol ⁻¹)	Population ^a (%)	J (calc.) ^a (Hz)	J (averaged (Hz)) J (exp) ^b (Hz)
8						1.82	2.2
	1	-123.1	3.36	0.19	4.88		
	2	- 65.7	0.05	47.74	1.15		
	2 3	- 66.8	0.00	52.02	2,44		
	4	137.9	4.10	0.05	6.26		
9						1.79	2.2
	1	-123.0	3.36	0.18	4.88		
	2 3	- 65.8	0.05	47.65	1.13		
	3	66.8	0.00	52.12	2.34		
	4	138.8	4.09	0.05	6.26		
10						4.37	nyawa .
	1	- 97.9	1.48	6.53	1.03		
	2 3	- 58.3	1.09	12.54	2.03		
	3	50.6	0.00	79.90	4.93		
	4	163.1	2.57	1.03	10.31		
11						1.86	
	1	- 58.4	0.00	96.82	1.83		
	2 3	66.8	2.04	3.10	2.46		
	3	-150.5	4.15	0.08	8.57		

^a Calculated by MM2; the proton-proton torsion angle $(\varphi_{H,H})$ is defined $-180^{\circ} < \varphi \le 180^{\circ}$, being positive in the clockwise direction from H-5. ^b See ref. 2.

precipitation from water-methanol. The following compounds were prepared in this way, and the ¹³C-N.m.r. data are recorded in Table I.

Sodium 5- β -D-glucopyranosylbarbiturate (1, 80%), m.p. > 170° (dec.), $[a]_D - 13^\circ$ (c 1, water); λ_{max} 256 nm (ε_{mM} 16.3); ν_{max} 3500–3200 (OH, NH) 1700 and 1590 cm⁻¹ (C=O).

Anal. Calc. for $C_{10}H_{13}N_2NaO_8$: Na, 7.36. Found: Na, 7.02. Sodium 5-β-D-galactopyranosylbarbiturate (2, 73%), m.p. > 200° (dec.), $[a]_D - 6^\circ$

238 NOTE

(c 1, water); λ_{max} 260 nm (ε_{mM} 12.1); ν_{max} 3500–3100 (OH, NH), 1690 and 1590 cm⁻¹ (C=O).

Anal. Calc. for C₁₀H₁₃N₂NaO₈: Na, 7.36. Found: Na, 6.94.

Sodium 5-β-D-mannopyranosylbarbiturate (3, 74%), m.p. > 180° (dec.), [a]_D -21° (c 1, water); λ_{max} 257 nm (ε_{mM} 13.5); ν_{max} 3500–3100 (OH, NH), 1690 and 1590 cm⁻¹ (C=O).

Anal. Calc. for C₁₀H₁₃N₂NaO₈: Na, 7.36. Found: Na, 7.00.

Sodium 5-(2-deoxy-β-D-*arabino*-hexopyranosyl)barbiturate (**4**, 80%), m.p. > 180° (dec.), $[a]_D - 30^\circ$ (c 1, water); λ_{max} 257 nm (ε_{mM} 16.9); ν_{max} 3500–3100 (OH, NH), 1700 and 1570 cm⁻¹ (C=O).

Anal. Calc. for C₁₀H₁₃N₂NaO₇: Na, 7.76. Found: Na, 7.37.

Sodium 5-(2-deoxy-β-D-arabino-hexopyranosyl-1,3-dimethylbarbiturate (5). — Application of the general procedure to 2-deoxy-D-arabino-hexose and 1,3-dimethylbarbituric acid gave 5 (73%), m.p. > 200° (dec.), [a]_D -15° (c 1, water); λ_{max} 259 nm (ε_{mM} 16.4); ν_{max} 3460 and 3370 (OH), 1660 and 1585 cm⁻¹ (C=O). For the ¹³C-n.m.r. data, see Table I.

Anal. Calc. for C₁₂H₁₂N₂NaO₇: Na, 7.09. Found: Na, 7.42.

Disodium 5-(β-D-glucopyranosyluronate) barbiturate (6). — (a) A solution of D-glucurono-6,3-lactone (25 mmol) in water (50 mL) was treated with barbituric acid (25 mmol), then neutralised with sodium carbonate, stored at 40° for 12 h, and concentrated under diminished pressure (to ~10 mL). Compound 6 (73%), precipitated by the addition of methanol–ether (1:1) and purified by reprecipitation from water–methanol–ether, had m.p. >118° (dec.), $[a]_D + 12^\circ$ (c 1, water); λ_{max} 256 nm (ε_{mM} 13.2); ν_{max} 3500–3100 (OH, NH), 1700–1590 cm⁻¹ (C=O). For the ¹³C-N.m.r. data, see Table I. Anal. Calc. for $C_{10}H_{10}N_2N_2O_0$: 13.21. Found Na, 13.00.

(b) Reaction as in (a), but with sodium p-glucuronate, gave 66% of 6.

Disodium 5-(β-D-glucopyranosyluronate)-1,3-dimethylbarbiturate (7). — (a) Reaction of 1,3-dimethylbarbituric acid with D-glucurono-6,3-lactone, as described above for 6, gave 7 (77%), m.p. > 120° (dec.), [a]_D + 22° (c 1, water); λ_{max} 257 nm (ε_{mM} 13.0); ν_{max} 3600–3100 (OH), 1680–1540 cm⁻¹ (C=O). For the ¹³C-n.m.r. data, see Table I.

Anal. Calc. for C₁₂H₁₄N₂Na₂O₉: Na, 12.22. Found: Na, 11.81.

(b) Reaction as in (a), but with sodium D-glucuronate, gave 64% of 7.

ACKNOWLEDGMENTS

We thank the Department of Analytical Chemistry of the University of Extremadura for the sodium determinations, and the CICYT for financial support (grant PA86-0218-C03-02).

REFERENCES

R. T. Walter, E. de Clercq, and F. Ekstein (Eds.), Nucleoside Analogues: Chemistry, Biology, and Medical Applications, Plenum Press, New York, 1978.

² M. Avalos Gonzalez, J. L. Jimenez Requejo, J. C. Palacios Albarran, and J. A. Galbis Perez, Carbohydr. Res., 158 (1986) 53-66.

³ W.J. Richter, K.O. Alt, W. Dieterle, J.W. Faigle, H. Kriemler, H. Mori, and T. Winkler, *Helv. Chim. Acta*, 58 (1975) 2512–2517.

⁴ N.L. Allinger, J. Am. Chem. Soc., 99 (1977) 8127-8134.